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Abstract

A Local Partial Inertia (LPI) technique is developed as an option within the
National Weather Service (NWS) FLDWAV dynamic flood routing model to
enhance its capability to model unsteady flows with subcritical/supercritical mixed-
flow regimes and moving interfaces. By neglecting varying portions of the inertial
terms in the unsteady flow momentum equation according to the local Froude
number, the LPI technique retains the essential accuracy associated with dynamic
routing models and provides stable numerical solutions for mixed flows for the
four-point implicit numerical scheme used in the FLDWAYV model.

Introduction

The NWS FLDWAV model is a generalized flood routing model which is based
on an implicit weighted four-point, nonlinear, finite-difference solution of the one-
dimensional unsteady flow (Saint-Venant) equations. FLDWAYV combines the
capabilities of the popular NWS DAMBRK and DWOPER models (Fread,1993) and
provides additional features, such as a Kalman filter for updating the flood forecast
using the observed real-time stages, a multiple-reach routing algorithm which
enables application of different routing techniques (implicit, explicit, level- pool,
Muskingum-Cunge, etc.) to specified subreaches, and a new network solution
algorithm for any dendritic river system. A new optional feature of FLDWAV,
presented herein, uses a Local Partial Inertial (LPI) solution technique for modeling
"mixed" (subcritical and/or supercritical) flows in specified subreaches.
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When modeling unsteady flows, the dynamic routing technique using the four-
point implicit numerical scheme tends to be less numerically stable than the
diffusion (zero inertia) routing technique for certain mixed flows, especially in the
near critical range of the Froude number (F,) or mixed flows with moving
supercritical/ subcritical interfaces. It has been observed that the diffusion technique
which eliminates the two inertial terms in the momentum equation produces stable
numerical solutions for flows where F. is in the range of critical flow (F ,=1.0).
To take advantage of the diffusion method’s stability and retain the accuracy of the
dynamic method, a LPI technique is introduced in which a numerical filter. (o)
modifies the extent of contribution of the inertial terms in the momentum equation
such that its properties vary from dynamic to diffusion. This paper presents the LPI
technique, its stability/error properties, and an application example.

Model Formulation and Error Analysis

The Saint-Venant unsteady flow equations are (Fread, 1993):
00/0x +3(4 +Ay)/ot-q=0 ¢))
00/3t+3(BQ */A)/0x +gA(Oh/dx +S+S ) +L+W,B=0 )

in which t is time, x is distance along the longitudinal axis of the waterway, h is the
water surface elevation, A is the active cross-sectional area of flow, A, is the
inactive (off-channel storage) cross-sectional area of flow, q is the lateral inflow or
outflow, P is the coefficient for nonuniform velocity distribution within the cross
section, g is the gravity constant, S; is the friction slope, S . is the slope due to
local expansion-contraction (large eddy loss), L is the momentum effect of lateral
flow, W, is the wind term, B is the channel flow width.

In the LPI technique, the momentum equation, Eq. (2), is modified by a numerical
filter, 0, so that the inertial terms are partially or totally omitted in some situations.
The modified equation and numerical filter are:

a[0Q/0t+a(PQ */4)/ox] +gA(Oh/ox+S f+Se) +L+ WfB =0 ?3)
1.0-F." (F.<1.0; m2 1)
o=t (F>1.0) “)

in which m is a user specified constant. Figure 1 shows the variation of o with F,
and with the value m. The o filter, «vhich depends on F., has a variation that ranges
from a linear function to the Dirac delta function. Since the Froude number is
determined at each computational point for each time, o is a “local” parameter.
Therefore, portions of the routing reach with low Froude numbers will be modeled
with all or essentially all of the inertial terms included, while those portions with F,
values in the vicinity of critical flow will be modeled with “partial inertial” effects
included; and supercritical flows (F, > 1) will be modeled with no inertial effects.
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It is found that smaller values of m tend
to stabilize the solution in some cases . 24 \ \&
while larger values of m provice more '
accuracy. By using the o filter, the
FLDWAYV model automatically changes
from a dynamic model to a diffusion
model and takes advantage of the stability
of the diffusion model for those flows D e
with F, near the critical value of 1.0. 00 02 o4 0s o8 Lo
Previously, a simple inertial filter (1-Fr?) Froude number (Fr)

was proposed (Havné and Brorsen,1986), Figure | The LPI Filter (0)

but it was not “localized” nor its error

properties extensively analyzed.

In order to generally evaluate the effects of the LPI technique on the accuracy of
the computational results, the proportional contribution of the inertial terms to the
total momentum equation is theoretically analyzed for a rectangular channel
situation. Also, assuming A,, S ., q, L, W, negligible, and f=1.0, the Saint-
Venant equations, Eqs (1) and (2), can be re-written in the following form:
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in which V is the average cross-sectional flow velocity, y is the flow depth, § is
the channel bottom slope. The first term on the left-hand-side of Eq. (6), noted as
IT in the following analysis, is the proportional contribution of the inertial terms
within the momentum equation, compared with the water surface slope; therefore,
IT is an indicator of the importance of the inertial terms. Using Eq. (5), the first
term (IT) in Eq. (6) can be reformulated as:

VD v (g Z-5p)] @
ox ox

T [

To determine the most influential factors affecting the magnitude of the inertial

terms, the velocity (V) is expressed by Manning's equation and the dy/ox term is

approximated by the kinematic assumption 0y/0x = (-1/c)dy/dt in which c is the

kinematic wave speed evaluated by c=KV; K is a cross-sectional shape factor with
a value of 1.5 for a typical river channel. Thus, Eq. (7) can be reconstructed as:

IT=-05F?2/(1+1.5¢F?) (8)
b =(n’g>*y ')/ (A*dyldr) ©)

in which ¢ is a new dimensionless parameter, n is the Manning's resistance
coefficient, A is the constant in Manning's equation (A=1.49 for English system of
units and A=1.0 for SI units). The new parameter ($), reflects the flow’s



unsteadiness and hydraulic condition. The value of ¢ is found to range between 5
and 5000 for the practical spectrum of unsteady flows. Values of ¢ less than about
10 occur only when a very large unsteady flow, resulting from a nearly
instantaneous failure of a high dam, propagates in a channel having a flat bed slope.
Equation (8) shows that the proportional contribution of the inertial terms to the
total momentum equation depends on both F, and ¢. Figure 2 shows IT as function
of F. for different ¢ values. According to Eq. (6), the contribution of the inertial
terms in the momentum equation is negligible if the absolute value of IT
approaches zero, which means that the surface slope and friction slope are
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Figure 2 IT as function of Fr and ¢ Figure 3 Neglected contribution of IT using LPI

essentially balanced to maintain the momentum conservation. Thus, the o filter only
affects a small term (IT) which decreases rapidly as the ¢ value increases and F,
approaches 1.0; and” Eq. (2) is very closely approximated by Eq. (3). Figure 3
shows the omitted proportion of the inertial term (IT multiplied by 1-0) in the LPI
technique as a function of F, and ¢ for m=1 and m=35; Figure 3 also shows that (1-
o) IT decreases as F, exceeds unity.

Numerical Experi

The computational errors for the LPI technique, which totally or partially omits
the inertial terms, are considered as differences between the results of using the
complete momentum equation (dynamic routing) and the results of using the LPI
modified equation. Numerical experiments are performed to compare the results
from both methods for a broad range of unsteady flow conditions.

A 64-km reach of a rectangular channel with width of 61 m is used for the
numerical testing. Three channel slopes, 0.0038, 0.0095 and 0.0189, and
Manning’s n of 0.03, 0.045 and 0.055 are used. Various unsteady flow conditions
are specified by using different inflow hydrograghs as the upstream boundary
condition with peak discharge ranging from 2264 cms to 4000 cms and time of rise
for the hydrographs ranging from 0.1 hour to 24 hour. An automatically generated
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loop rating is used as the downstream boundary condition.
Two kinds of errors are examined in the testing, they are:

E (%) =max [(Q,,®)?" =0, (x)?) x100/Q, ()®™;  (x=0-64km)  (10)
t+N ’

E,(%)=100[(¥ (Q(*"-Qty")/ (N-1)]2/ 0" (at x=32 km)  (11)

in which the superscript refers the results from either the dynamic or the LPI
technique, Q is the average discharge. E, (%) is the maximum normalized error in
the computed peak profiles, and E, (%) is the normalized root-mean-square (RMS)
error in the computed hydrographs.

The analysis reveals that the most influential factor affecting the contribution of
the inertial terms is the parameter ¢. It is expected that the errors arising from
partially or totally omitting the inertial terms are also directly related to some
representative ¢. Figure 4 shows that the maximum error in the peak profile is well
related with the parameter, ¢ , = n® g2y " T, /[A* (¥ n-Y 0)] in which T is the
time of the rise of the inflow hydrograph; y, and y , are the initial and peak depth
of the inflow and they can be determined from Manning’s equation
y=(nQ/ABvVS,))*¢. The RMS error, E (%) shown in Figure 5 are the resuits from
only supercritical flows in which the inertial terms are totally omitted in the LPI
method; and ¢ is determined according to average values of the rising limb of the
hydrographs. It is interesting to notice that a line from Eq. (8) with E=1.10 can be
used to fit these results although Eq. (8) does not represent the actual error. A value
of 5 for m in the o function (Eq. (4)) is used for these tests.

_ All the tests show that the overall errors in using the LPI technique are very small
(less than 2%) for-most situations (¢ > 10 ) and less than 6% for special situations
when 5<¢<10, which are only applicable for near instantaneous large dam-failure
induced floods in channels of very flat bed slope.
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Example Application

The LPI enhanced FLDWAV model is applied to simulate a dam-break induced
flood wave. The flood wave, with a peak discharge of about 2264 cms and a time of
rise for the hydrograph of about 0.4 hours at the upstream boundary, travels
through a 19.3-km reach of a extremely non-prismatic channel with a bottom slope
varying from 0.0180 upstream to 0.0019 downstream and Manning's n varying
from 0.05 upstream to 0.03 downstream. Mixed flow occurs along the steeper
portions of the reach when the flow changes from the initial low flow to its peak,
which causes numerical stability problems when using the conventional four-point
implicit scheme.

Using the LPI technique, the FLDWAV model produces stable and smooth
solutions for the flood wave simulation as shown in Figure 6. Also, Figure 6
compares the LPI computed hydrographs at four locations with: (1) those obtained
from a characteristic-based upwind explicit dynamic routing technique which is
available in the FLDWAV model to simulate nearly instantaneous dam-failure
induced flood waves and near critical
mixed flows; and (2) those from a
previously  developed  mixed-flow

_algorithm  (Fread, 1993) in the

FLDWAYV model. The explicit scheme O B Evp. —— Mixed-flow

has been tested successfully (Jin and 2000 | 13263, e
Fread, 1995) for near instantaneous 4x=193  (Fr042-057)
dam-break waves and mixed-flows.

The close agreement between the more
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in simulating the near critical mixed Figure 6 Computed dam-failure hydrographs

flows with peak errors of 4-10%.
Conclusion

The LPI technique, which filters the inertial terms in the one-dimensional unsteady
flow momentum equation according to the local Froude number, increases the
FLDWAV model’s stability in simulating near critical subcritical/supercritical
mixed flows including supercritical/subcritical moving interfaces while retaining the
accuracy of dynamic modeling for subcritical flows. The errors introduced by the
LPI technique are found negligible,i.e, less than about 2% for most flow conditions
including supercritical flows (F,> 1), although errors can approach 4-6% for near
instantaneous dam-failure induced floods propagating in channels of flat slope.
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